Tight-Binding Models for Si Quantum Devices and Parameter Fitting using Genetic Algorithms

Gerhard Klimeck, R. Chris Bowen, Timothy B. Boykin*, Carlos Salazar-L azaro, Thomas A. Cwik, and Adrian Stoica

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
*University of Alabama in Huntsville, Department of Electrical and Computer Engineering, Huntsville, AL 35899

August 25, 1999

Quantum mechanical simulations of carrier transport in Si require an accurate model of the complicated Si
bandstructure. Tight-binding models are an attractive method of choice since they bear the full electronic
structure symmetry in them and they can discretize arealistic device on an atomic scale. However, tight-binding
models are not simple to parameterize and to characterize. This work addresses two issues: 1) the need for an
automated fitting procedure that maps tight-binding orbital interaction energiesto physical observables such as
effective masses and band edges, and 2) the capabilities and accuracy of the nearest and second-nearest neighbor
tight- binding sp3s* models with respect to carrier transport. A genetic algorithm approach is used to fit orbital
interaction energies of these tight-binding modelsin a9 and 20 dimensional global optimization problem for Si.
A second-nearest neighbor sp3s* parameter set that fitsall relevant conduction and valence band propertieswith
ahigh degree of accuracy is presented. No such global fit was found for the nearest neighbor sp3s* model and
two sets, one heavily weighed for electron the other for hole properties are presented. Bandstructure properties
relevant for electron and hole transport in Si derived from these three sets are compared to the seminal Vogl et

al. parameters.

I.INTRODUCTION

Appeal and problems of tight-binding models. Nano-scaled
electronic devices are characterized by material and charge
density variations on the length scale of a few atoms. Tight-
binding models can resolve spatial material variations on an
atomic scale and they bear the full crystalline and electronic
symmetry of semiconductor materialsin them. This ability to
provide spatia resolution on an atomic scale with complete
electronic structure symmetry has led to an increased use of
these tight-binding models for the simulation of nano-scaled
electronic devices [1-7]. While the tight binding approach is
systematically appealing, it bears a big problem in that the
basic building constructs for the tight-binding Hamiltonian
are not conduction band edges and effective masses that are
typically used for electronic device modeling, but orbital in-
teraction energies. The coupling of the discrete orbitals with
theseinteraction energiesresultsin the formation of electronic
bands. The proper selection of the kind and humber of basic
orbitals (typicaly s, p, and d) and their local and non-local
coupling strength resultsin the proper representation of mate-
rial characteristics such as band energiesand effective masses.
The global bandstructure and effective masses are therefore
related to the interaction energiesin a non-trivial manner.

Tight-binding parameters for global fits. Given the basic
concept of the tight-binding models, the first task was to ver-
ify that these models can represent electronic bandstructure
properties that can be determined by measurement or other
theoretical calculations [8]. First systematic attempts [9] to
evaluate the tight-binding models focussed on the parameter
fitting to match global bandstructuredatafor “al” bands. This
work has been quite successful in showing that tight binding
models can represent el ectronic bandstructurewith similar ac-
curacy to other methods. The parameterizations of Vogl et al.
have provided inroads of the tight-binding modelsto a variety
of fields. In fact at this time a reference count engine shows
that their paper has been referenced 716 times[10].

Tight-binding parameters for electronic device modeling It
is important to realize that the tight-binding models do not
include all the physics of electronic structure. Only a sub-
set of physical phenomena can be modeled within this frame-
work. The accuracy of these models strongly depends on the
choiceof orbitalsthat areincluded and the parameterization of
the orbital interaction energies. It is for example understood,
but not widely appreciated, that the sp3s* nearest neighbor
model pathologically predicts an infinite transverse mass at
the X point [5]. Adding more orbitals to the basis or allowing
second-nearest neighbor coupling of the sp3s* orbitals elimi-
nates this pathology. However, adding more orbitals or more
neighborsto the model adds more orbital interaction energies
to the list of parameters that need to be fitted and the numeri-
cal load isincreased dueto theincreasein basis size. With the
limitations of the sp3s* model in mind it must be emphasized
that early parameterizations [9] provided global band struc-
ture fits. The following two paragraphs serve as a reminder
which bandstructure properties must be properly represented
for a quantum mechanical carrier transport simulation.

Masses The propagation of electrons and holes is domi-
nated by the properties of the lowest conduction and high-
est three valence bands. Carriers typically do not propagate
in other valence and conduction bands. However these other
bands shape the symmetries of the conduction and valence
bands of interest. The word shape is indeed of paramount
importance here. The curvature of the bands determines the
effective mass, which is the key parameter that determinesthe
propagation of carriers. Most of the electronic device prop-
erties such as current, charge densities, and state quantization
scaledirectly or inversely with the effectivemass. Thereforea
bandstructure model used for electronic transport must repro-
duce the effective mass of the band of interest very well.

Tunneling An entire class of devicesis designed around the
physical effect that electrons and holes can penetrate into the
bandgap. This quantum mechanical tunneling effect enables
the functionality of electronic devices such as tunnel diodes



and resonant tunneling diodes. The penetration of the elec-
tron wavefunction into the bandgap can be described by an
exponential decay constant. This decay constant depends di-
rectly on the conduction to valence band coupling [6]. Even if
guantum device is designed to be completely electronic in its
basi c operation (no free holes), such as the resonant tunneling
diode, the conduction and valence band coupling scales the
confinement and tunneling properties exponentialy.

Need for a fitting algorithm The success in the quantita-
tive modeling [6,7] of high performance resonance tunnel-
ing diodes with the Nanoelectronic modeling tool (NEMO)
was strongly dependent on the proper parameterization of
the sp3s* tight-binding parameters for materials such as In-
GaAs and InAlAs. To aid the fitting process, Boykin [11-13]
has provided analytical formulas for effective masses and
band edges for nearest and second-nearest sp3s* tight-binding
models at the high symmetry point I'. This work enabled an
understanding of which masses can and cannot befit giventhe
nearest and second-nearest neighbor model. Since the equa-
tions are limited to high symmetry points and since they do
not invert into equations for the orbital interaction energies
as a function of effective masses and band edges, the fitting
remains a tedious task. Another complication arises for ma-
terials where the modeling of the X valley parametersisim-
portant. The conduction band minimum in the X direction
is typically not at the zone edge and no explicit expression
for the conduction band minimum and its curvatureis known.
The parameter optimization is then completely dependent on
anumerical technique.

Overview The following Section Il describes our approach
to the large dimensional, non-linear global optimization prob-
lem to fit sp3s* tight-binding parametersto experimental ob-
servables. Using our resulting parameter sets for Si we point
out the limitations of the sp3s* nearest and second nearest
neighbor model in Section I11.

I1. OPTIMIZATION PROCEDURE

Choice of Optimization Procedure Boykin's equations
[11-13] for effective masses as a function of interaction en-
ergies at high symmetry points show rich non-linear behav-
ior. Off the main symmetry points no explicit effective mass
formulas can be derived, but the parameter dependence can
safely be assumed highly non-linear as well. The number
of “free” parametersis large: the nearest and second nearest
neighbor sp3s* tight-binding models for elementary semicon-
ductors such as Si and Ge have 9 and 20 orbital interaction
parameters, respectively. For compound semiconductors such
as GaAsor InP the number of parametersis 15 and 37. Within
such alarge, non-linear parameter space aglobal minimum for
a best fit to experimental data is to be found. Given the non-
linearity and size of the problem, it is expected that various
local minima exist. This assumption was indeed verified dur-
ing the course of this research. To address the issue of global
minimization we chose a genetic algorithm approach. Brief
and unsuccessful attempts were made to solve our problem
using asimulated annealing [14] algorithm.

Genetic Algorithm Optimization Genetic algorithm opti-
mization employs stochastic methods modeled on princi-
ples of natural selection and evolution of biological systems
[15-17]. They are global, multi-parameter and do not re-
quire constraints on continuity of the solution space. They
have been introduced in electromagnetic design and model-
ing over thelast 5 years[17-21] in therelatively diverse areas
of antenna design, filter design and the design of scattering
structures. The work in electronic structure modeling and op-
timization is more recent [22-24]. At JPL an effort is under-
way to advance the capabilities for el ectromagnetic and elec-
tronic structure modeling of select microdevice structures. A
genetic algorithm package that is easy and flexible to use is
part of this effort.
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FIG. 1. Genetic Algorithm flow diagram (from [20]).

A genetic algorithm optimization package consists of a se-
guence of procedures that lead to an optimized result. This
seguence is common among al genetic algorithms with vari-
ants at each stage [16]:

Model parameterization and gene encoding.

Initialization of population.

o Evaluation of fitness function for population.

Selection of subset of population.

Reproduction through crossover and mutation.
e Evaluation of fitness function and convergence check.

This process is diagrammed in Figure 1 and is the basis for a
genera package.

Parameterization One of the most important stages of the
optimization processis the sound parameterization of the de-
sign and resultant encoding of the parameterization into a
chromosome. The parameters need to be chosen from the de-
sign spacein an effective manner, limited in rangeto a set that



is physical, and encoded in a meaningful way. In the case pre-
sented here, for example, the interaction energies do have a
physical meaning, in their relative sizes and signs. We have
found that blind optimization, without controlling the allowed
range of energies for some of the parameters (like the spin
orbit interaction energies) unphysical results can be obtained.
Similarly, how the parameter is encoded into a gene is im-
portant. For example encoding a real parameter into a binary
string or using real-valued encoding is itself atradeoff [6]. In
general, efficient convergence of the optimization algorithm
will heavily depend upon the initial parameterization and en-
coding of the design. For the optimization problem presented
in this paper a custom real number encoding scheme was cho-
sen to control the range and mutation size of each parameter
more closely. Each parameter is represented by a double pre-
cision number without further discretization through the typi-
cal representation as a binary string.

Choice of a Smulation Package A number of genetic al-
gorithms and packages exist that fit the structure outlined in
Figure 1. The key needsfor the work in this paper are that the
package be flexible enoughto allow arange of design parame-
terizations and be ableto exploit high performance computers.
First, the different parameterizations and gene encodings, as
well as mutation strategies need to be easily available. Sec-
ondly, because the parameter spaceis quite large, alarge gene
pool needs to be explored. Utilization of massively parallel
computers for the fitness evaluation of the independent genes
can lead to adramatic speedup. These points are encapsul ated
in PGAPack, a parallel genetic algorithm library [25]. This
package consists of aset of library routines supplying the user
multiple levels of control over the optimization process. The
levels vary from default encodings, with simple initialization
of parameters and single statement execution, to the ability to
modify, at alow-level, all relevant parametersin the optimiza-
tion process. User written routines for eval uation or crossover
and mutation can also be inserted if necessary. The package
is written using the Message Passing Interface (MPI) for par-
allel execution on a number of processors. A master process
coordinates the chromosome initialization, selection and re-
production while slave processes calculate the fithess func-
tion, including the execution the electronic structure code on
different processors.

Genetic Algorithm Parameters The genetic algorithm (GA)
parameters can be classified into two groups: 1) parameter en-
coding and 2) the GA steering parameters such as population
and replacement sizes, crossover and mutation probabilities,
stopping and restart conditions. The orbital interaction ener-
gies are encoded into double precision numbers as mentioned
above. Each value is drawn randomly from a Gaussian distri-
bution. The mean and standard deviation are entered for each
parameter. The Gaussian distribution can be clipped to a hard
minimum or maximum. Each value has also a mutation size
in percent of its current value attached as an input parameter.
For orbital interaction energies that are of the order of single
digit electron volts we typically prescribed a standard devia-
tion of about 0.2 0.4 eV. Smaller orbital interaction energies
typically were assigned correspondingly smaller standard de-
viations. A variety of different population and replacement
sizes aswell as crossover and mutation probabilities were ex-

plored. Satisfactory fithess improvement is typically obtained
for populations of 100-200 el ements per parameter, a replace-
ment of 10-30 % per generation, and mutation and crossover
probabilities of 10-50%.

Fitness Evaluation There are two stages to the evaluation
of the fitness of a particular parameter set: 1) computation
of all the relevant physical quantities, and 2) the assembly of
these physical quantities into a single real value that will be
used in the optimization for the ranking of this particular set.
The details of these two stages for the tight-binding interac-
tion energy optimization problem are given in the following
paragraphs.

Bandstructure and Effective Mass Calculation The NEMO
software provides a database-like access to materials that can
be user-defined. User- defined materials are represented in an
ASCII character stream that can be parsed by the NEMO ma-
terial database engine. Once a new material is described by
the orbital interaction energies, a variety of materia proper-
ties can be easily retrieved by simple queries. The databaseis
programmable, where function calls to the standard math li-
brary operations (+,-, sin, cos, min, max, etc.) and avariety of
NEMO functions can be included. Typical functions needed
for this optimization problem are computation of bandedges,
effective masses as a function of band index and electron mo-
mentum and the determination of the actual X and L point
minimaon the X and L axis.

Fitness Function The fitness function provides a ranking
algorithm that maps the physics-based data into a single num-
ber. In the case presented here the fitness function is quite
simply the weighted sum of the normalized variances between
that targeted and actual physical values. Thegenetic algorithm
is driven to minimize this single number. A perfect fit corre-
spondsto afitness of 0.0. If a“perfect” fit cannot be obtained
the genetic algorithm is driven towards the smalles positive
fitness value. The choice of weights influences how individ-
ual deviations are rates amongst the others. As part of the
input to the optimization package a list of physical quantities
such as bandedges, momentum minima, and effective masses
is provided. Each quantity has a weight associated with it.
To restrict the stochastic search further we have also included
an acceptable minimum and maximum value to the physical
quantity. If the computed value falls outside the acceptable
range afitness value of 10,000 is assigned and all further eval-
uations of this gene are stopped.

Required CPU Time. The computation of the effective
masses and band edges from the tight binding Hamiltonian
takes about 1 to second on an Origin 2000 and HP SPXX-
2000. With a population size of 5000, a replacement size of
1000 and an evolution over 1000 generationsthis corresponds
to 280 about CPU hours. These evolutions were typically run
on 16 or 32 CPU'’s, where communication overhead is still
minimal. This correspondsto awall clock time of about 17.5
and 8.75 hours, respectively.



I11. RESULTS: OPTIMIZED ORBITAL INTERACTION
ENERGIES

Orbital interaction energies for the nearest and second-
nearest neighbor sp3s* model describing Si were optimized
with the genetic algorithm described above. The first 2
columns of Table | show the detailed material properties that
were to be properly represented by the tight binding model.
The material properties were taken or derived from Si data
published in Reference [8]. The properties can be character-
ized into three categories: 1) band edge energies, 2) effective
masses in various bands and crystal directions, and 3) crystal
momentum corresponding to the minimum conduction band
energy in the X direction. The next paragraphs step through
the results of the optimization procedure.

Second-Nearest Neigbor sp3s* Thethird and fourth column
of Table | show the material propertiesthat correspond to the
optimized second-nearest neighbor (2N) model and the rela-
tive deviation from the target value in percent. The optimal
orbital interaction energiesare shownin Tablell. All targeted
material properties are represented in the tight-binding model
within an accuracy of better than 4 percent. 12 out of 15 tar-
gets are matched to better than one percent. Such agreement
appears to be well within the experimental accuracy of the
bandstructuredata. The sp3s* second-nearest neighbor model
isfound to be able to represent the Si material parametersrel-
evant to carrier transport well.

Nearest Neighbor sp3s* No such single, well optimized
parameter set could be found for the sp3s* nearest neighbor
model for Si. With the same optimization weights used for
the second-nearest neighbor model, both electron and hole
masses converged to a minimum fitness value far away from
the experimental target values. Two separate numerical ex-
periments where the weights for electron masses were raised
and lowered for the holes, and vice versa resulted in two dif-
ferent “optimal” sets. The sets are labeled nearest-neighbor
(NN) conduction band (CB) and Vaence band (VB) and the
material properties are tabulated in columns 5/6 and 7/8 of
Table |, respectively. The VB parameter set reproduces the
hole masses and bands reasonably well. The symmetry of the
bands are reproduced properly (see Figure 3). This param-
eter set may be useful for for hole simulations using the NN
tight-binding sp3s* model.

Even with the focus on electron masses a good agreement
with the transverse/light el ectron mass could not be achieved.
The deviation still remained over 50%. Table Il shows that
the CB parameters contain an interaction energy V,,, of 23 eV
which is completely unphysical. The reason for the usage of
tight-binding modelsin electron transport, which isthe proper
description of the electron wavefunction symmetry, will be
lost. The optimization drives this one parameter to such ex-
treme values due to the pathology of the sp3s* nearest neigh-
bor model. Although the effective masses and bandedges for
electrons look reasonable, we urge for caution in using the
sp3s* NN model to model electron transport in Si.

The material parameters that result from the standard Vogl
parameters are included in columns 9/10 of Table | for ref-
erence. These parameters do not include a spin-orbit inter-
action. The hole bands and masses are therefore not properly

represented. The conduction band properties agree reasonably
well with the experimental data, considering the limits of the
model.
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FIG. 2. Conduction bands computed in the nearest neighbor (NN)
and second-nearest neighbor (2N) models. The NN model is com-

puted with three different parameter sets: electron optimized, hole
optimized, and original Vogl [9] parameters.

Graphical Comparisons Figure 2 depicts the conduction
band minimum along the[100] directionfromtheI" to X point
for the four parameter sets discussed above. All four curves
“look” reasonable in comparison to each other. Indeed Ta-
ble | showed that the heavy electron masses all agree within
20 percent to the experimental value. Note, however, that a
graph like this does not show any of the transverse momen-
tum dependence that results in the material property of the
light electron mass.
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FIG. 3. Bandstructure quantities computed for three different model and parameter combination: 1) left column, second-nearest neighbor
(2N), 2) center column, nearest neighbor optimized for electrons (NN CB), and 3) right column, nearest-neighbor optimized for holes (NN
VB). First row: Bands along the [100] and [111] directions. Second row: contour plot of lowest conduction band in the first Brillouin zone in
the (001) plane, Third row: Isosurface of the lowest conduction band at an energy of 1.45eV.



The capability to model the light-electron massin the near-
est neighbor and second-nearest neighbor tight-binding model
isthetheme of Figure 3. The columns of Figure 3 are grouped
by the parameter sets: 1/left column) 2nd-nearest neighbor
(2N), 2/center column) nearest neighbor electron optimization
(NN CB), and 3/right column) nearest neighbor hole optimiza-
tion (NN VB). Theleft column will be considered as a refer-
ence since it provides the best agreement with experimental
data. The upper row of Figure 3 shows the bands along the
[100] and [111] directions. Symmetry and curvatures of 3a)
correspond to the data shown for Si in reference [8]. Figure
3b) which stems the el ectron optimized parameters shows the
lowest conduction band to be similar to 3a). The upper con-
duction bands have been pushed to lower energies at the I'
point, providing more curavture to lowest conduction band.
In fact the minimum conduction band on the [100]. Lineis
pushed in from the target value of 0.75 to 0.597. Note that the
hole band symmetry is not well represented at all. The hole
masses are clearly too light as indicated in Table | as well.
Figure 3c) shows quite similar behavior to Figure 3a) for
the hole bands and the lowest conduction band, however the
upper conduction bands are quite modified.

The second row of Figure 3 shows the contour plots of the
lowest conduction band in the (001) plane of thefirst Brillouin
zone. The dark blue colors correspond to the minimum of the
scale at about 1.13eV. The red color corresponds to the max-
imum resolved energy of about 3.5eV. The third row shows
the lowest conduction band isosurfaces in the first Brillouin
zone at an energy of 1.45eV. Figures 3d-f) and 3g-i) al show
the expected four and six conduction band minima. However,
only 3d,g) show the correct “cigar” shape representing a cor-
rect light-electron and heavy-electron symmetry. Figures 3f,i)
show “pancake” like conduction band surfaces, rather than the
expected “cigar” shaped surfaces. In fact the light electron
mass is larger than the heavy electron mass (see also Table ).
The conduction shape of the conduction band optimized near-
est neighbor parameter set shows roughly the right symmetry
with the correct light / heavy electron ratio.

Figure 3f) shows clearly the complete pathology of the
sp3s* model with respect to the transverse electron mass. By
the coloring it can be clearly seen that at the zone faces the
band edges are flat and the mass along these edges is in-
deed infinite. A finite transverse effective mass can be ob-
tained only pushing the conduction band minimum away from
the zone edge. The deeper the conduction band minimum is
pushed towards the I" point, the smaller the transverse effec-
tive mass can be made. This comes with the cost of bring-
ing the upper conduction bands much lower in energy and
losing the proper masses for the hole-bands. Also as noted
above, one of the interaction energies becomes unphysically
large and electron and hole wavefunction symmetries are not
expected to be correct.

For reference Figure 4 shows the lowest conduction band
isosurface at 1.45eV in the Brillouin zone computed with the
standard Vogl parameters. The incorrect shape of the conduc-
tion band minimum surfaceis clearly evident similar to Figure
3i).

Which model to use? The second-nearest neighbor sp3s*
tight-binding model clearly represents the complex Si band-
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FIG. 4. Lowest conduction band iso surface at an energy of
1.45eV based on the Vogl [9] parameters.

structure better than the nearest neighbor model. The better
model comes with a price of added dimensionality in the pa-
rameter fitting problem (9 to 20 parameters for elementary
semiconductors, 15 to 37 for compound semiconductors) and
with the price of increased numerical complexity due to the
increase of the size of the basis. Despite its complications
the second-nearest neighbor model isto be preferred over the
nearest neighbor model which lacks basic capabilities to si-
multaneously model electrons and holes properly.

Use of nearest-neighbor model for indirect bandgap mate-
rials. Although the transverse mass pathology in the nearest
neighbor model is known, some researchers continue to use
[26] this model to simulate problems where the proper light
electron mass is important, or where the proper hole masses
are important. We hope that Figures 3 and 4 clearly visual-
ize the limits of the nearest neighbor sp3s* model away from
theT" point. For existing research software, where arewrite of
the underlying algorithms is impossible/impractical, we sug-
gest the usage of the two new parameter sets provided here
as asanity check for parameter dependencein the simulation.
For “pure’ hole simulations the specialized nearest neighbor
parameter set may provide more physical answers.

Special caution needsto be taken with the electron parame-
ter set, since it does include an unphysically large interaction
energy. This parameter set is to be seen as awarning that this
model should not be used for the modeling of indirect bandgap
material swhere conduction band minimaareinthe X or L val-
ley. Forcing the conduction band to a certain curvature off the
I" point will lead to unphysical interaction energies.

IV. FUTURE WORK

The genetic algorithm (GA) based optimization schemein
its generality and flexibility has enabled usto look at complex
parameterizations of tight-binding models for electron trans-
port ssimulations. The second-nearest neighbor model hides
some caveats with respect to three-center interaction integrals.



The scaling of these interaction energies with strain becomes
quite complicated. We are therefore exploring sp3d5 tight-
binding models to properly represent the highest valence and
lowest conduction bands under the inclusion of strain. The
GA approach has enabled us to consider sp3d5 tight bind-
ing models serioudly, since we can now overcome the fitting
nightmare. Preliminary results show that the GA fitting pro-
cedure workswell for the sp3s5 models as well and result will
be published elsewhere.

V. SUMMARY

This work has presented three major points needed for for
the quantum mechanical simulation of carrier transportin Si:

e agenetic algorithm-based optimization scheme for the
determination of orbital interaction energies for tight-
binding models, given physical observables such as
band edges and effective masses.

e 3 new parameter setsto represent Si in the nearest and
second-nearest sp3s* models

e aclear visualization of the transverse X mass pathology
of the nearest neigbor sp3s* model

We hope that Figure 3 helps deterr the use of the nearest-
neighbor sp3s* model for the modeling of indirect bandgap
materials such as Si or Ge.
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TABLE I. Optimization targets and optimized results for the nearest-neighbor (NN) and second-nearest (2NN) neighbor model. Two sets
of new NN parameters are shown: one optimized for the conduction band (CB) the other for the valence band (VB). The bands are normalized
such that EX = 0.0eV The effective masses for holes are not listed for the original Vogl parameters, since they do not include a spin-orbit
interaction.

Property Target 2N % dev NN CB % dev NN VB % dev Vogl % dev
EL 3.350 3.353 -0.098 3.341 0.115 3.346 0.118 3.430 -2.388
Apin 0.750 0.758 -1.067 0.597 20.4 0.643 14.26 0.731 2533
Efmin 1.130 1.129 0.0496 1.133 -0.257 1.118 1.019 1.17] -3.658
my, 0.916 0.916 0.030 0.907 1.017 0.531 42.06 0.742 19.07
mx 0.191 0.191 -0.020 0.297 -56.11 1.054 -4535 1.620 -750.6
Ef 2.050 2.048 0.097 2.031 0.949 2.186 -6.643 2.160 -5.389
m;;,[001] -0.204 -0.198 3.082 -0.013 93.71 -0.187 8.484

m;;,[011] -0.147 -0.146 0.525 -0.012 91.59 -0.154 -4.929

mj,[111] -0.139 -0.139 0.395 -0.010 92.79 -0.117 15.816

mj,[001] -0.275 -0.285 -3.643 -0.030 89.22 -0.348 -26.77

mj,[011] -0.579 -0.581 -0.338 -0.033 94.32 -0.580 -0.174

mj,[111] -0.738 -0.737 0.119 -0.034 95.36 -0.692 6.238

mj, -0.234 -0.237 -1.487 -0.018 92.19 -0.247 -5.381

Aso 0.045 0.045 -0.067 0.045 0 0.045 0 0 100

TABLE Il. Bandstructure model parametersfor the nearest-neighbor (NN) and second-nearest (2NN) neighbor model. Two sets of new NN
parameters are shown: one optimized for the conduction band (CB) the other for the valence band (VB). All parameters are in units of V.

Parameter Vog| NN CB NN VB 2NN
E,(000) -4.20000 -3.65866 -3.31789 -4.81341
E,(000) 1.71500 1.67889 1.67862 1.77563
E,+(000) 6.68500 3.87567 8.23164 5.61342
Ves(553) -8.30000 -7.97142 -9.50895 -8.33255
Vie(311) 1.71500 1.69558 1.69552 1.69916
Vey (311 4.57500 23.32410 477573 5.29091
Vir(333) 5.72920 8.87467 7.14230 5.86140
Verp(A11) 5.37490 5.41174 7.25052 4.88308
Aso 0.00000 0.04500 0.04500 0.01501
Vs (110) 0.01591
Vez (110) 0.08002
Vi (011) 1.31699
Viro (110) -0.00579
Vo (011) 0.50103
V2 (110) 0.00762
Vea (011) -0.10662
Vi (110) 0.55067
Vey (011) -2.27784




